Amalgamated Worksheet #3

Various Artists

April 16, 2013

1 Mike Hartglass

Unless otherwise stated, assume V is a finite dimensional complex vector space

1.) Do the following formulae define inner products on the given vector spaces? (here $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{C}^2

- a.) $V = \mathbb{C}^2$, $\langle x, y \rangle = x_1 y_1 + x_2 y_2$
- b.) $V = \mathbb{C}^2, \langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2}$
- c.) $V = \mathbb{C}^2$, $\langle x, y \rangle = x_1 \overline{y_2} + x_2 \overline{y_1}$
- d.) $V = \mathcal{P}^2(\mathbb{C}), \ \langle p, q \rangle = p(0)\overline{q(0)} + p(\sqrt{2})\overline{q(\sqrt{2})} + p(\pi)\overline{q(\pi)}$
- 2.) Suppose u and v are nonzero vectors in an inner product space v.
- a.) Define

$$y = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$$
 and $z = v - \frac{\langle v, w \rangle}{\langle w, w \rangle} w$

Show that v = y + z, $y \in \text{span}(w)$, and z is orthogonal to every vector in span(w). b.) Draw a picture of this in \mathbb{R}^2 for w = (1, 0) and v = (1, 1).

3.) Suppose $(e_1, ..., e_n)$ is an orthonormal basis for a vector space V, and let $x = c_1e_1 + \cdots + c_ne_n$. Find a formula for the c'_is .

4.) a.) Suppose x and y are orthogonal vectors in an inner product space V. Prove that

$$||x+y||^2 = ||x^2|| + ||y_2||$$

b.) Suppose x and y are vectors in an inner product space V. Prove that

 $||x + ay|| \ge ||x||$ for all $a \in \mathbb{F}$ if and only if $\langle x, y \rangle = 0$.

Draw a picture of this in \mathbb{R}^2 .

2 Peyam Tabrizian

Problem 1:

Suppose \langle , \rangle is an inner product on W, and $T: V \to W$ is injective. Show that:

$$(u,v) := \langle T(u), T(v) \rangle$$

is an inner product on V.

Problem 2:

Show that if v_1, \dots, v_k are nonzero orthogonal vectors, then (v_1, \dots, v_k) is linearly independent.

Problem 3:

Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Show that every eigenvalue of T is real.

Problem 4:

Show that if T is normal, then $Nul(T^*) = Nul(T)$

Problem 5:

Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and U is a subspace of V. Show that U is invariant under T if and only if U^{\perp} is invariant under T^*

Problem 6:

(if time permits) Suppose V is finite-dimensional and U is a subspace of V. Show that $V = U \oplus U^{\perp}$

Problem 7:

(if time permits) Let (v_1, \dots, v_n) be an orthonormal basis of V and suppose the matrix of $T \in \mathcal{L}(V)$ is A. What is the matrix of T^* with respect to that same basis?

3 Daniel Sparks

1

Let $U = \text{Span}(u_1, \dots, u_m)$ and $W = \text{Span}(w_1, \dots, w_k)$ be two subspaces of an inner product space V. Suppose that for each $1 \leq i \leq m, 1 \leq j \leq k$ that $\langle u_i, w_j \rangle = 0$. Prove that $U \perp W$.

$\mathbf{2}$

Let $P: V \to V$ be a projection onto the subspace U. That is, suppose that $P^2 = P$ and P(V) = U. Prove that P is self-adjoint if and only if P is an orthogonal projection, that is, if and only if $null(P) \perp range(P)$.