Amalgamated Worksheet \# 3

Various Artists

April 16, 2013

1 Mike Hartglass

Unless otherwise stated, assume V is a finite dimensional complex vector space
1.) Do the following formulae define inner products on the given vector spaces? (here $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{C}^{2}
a.) $V=\mathbb{C}^{2},\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}$
b.) $V=\mathbb{C}^{2},\langle x, y\rangle=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}$
c.) $V=\mathbb{C}^{2},\langle x, y\rangle=x_{1} \overline{y_{2}}+x_{2} \overline{y_{1}}$
d.) $V=\mathcal{P}^{2}(\mathbb{C}),\langle p, q\rangle=p(0) \overline{q(0)}+p(\sqrt{2}) \overline{q(\sqrt{2})}+p(\pi) \overline{q(\pi)}$
2.) Suppose u and v are nonzero vectors in an inner product space v.
a.) Define

$$
y=\frac{\langle v, w\rangle}{\langle w, w\rangle} w \text { and } z=v-\frac{\langle v, w\rangle}{\langle w, w\rangle} w .
$$

Show that $v=y+z, y \in \operatorname{span}(w)$, and z is orthogonal to every vector in $\operatorname{span}(w)$.
b.) Draw a picture of this in \mathbb{R}^{2} for $w=(1,0)$ and $v=(1,1)$.
3.) Suppose $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis for a vector space V, and let $x=$ $c_{1} e_{1}+\cdots c_{n} e_{n}$. Find a formula for the $c_{i}^{\prime} s$.
4.) a.) Suppose x and y are orthogonal vectors in an inner product space V. Prove that

$$
\|x+y\|^{2}=\left\|x^{2}\right\|+\left\|y_{2}\right\|
$$

b.) Suppose x and y are vectors in an inner product space V. Prove that

$$
\|x+a y\| \geq\|x\| \text { for all } a \in \mathbb{F} \text { if and only if }\langle x, y\rangle=0
$$

Draw a picture of this in \mathbb{R}^{2}.

2 Peyam Tabrizian

Problem 1:

Suppose \langle,$\rangle is an inner product on W$, and $T: V \rightarrow W$ is injective. Show that:

$$
(u, v):=\langle T(u), T(v)\rangle
$$

is an inner product on V.

Problem 2:

Show that if v_{1}, \cdots, v_{k} are nonzero orthogonal vectors, then $\left(v_{1}, \cdots, v_{k}\right)$ is linearly independent.

Problem 3:

Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Show that every eigenvalue of T is real.

Problem 4:

Show that if T is normal, then $\operatorname{Nul}\left(T^{*}\right)=\operatorname{Nul}(T)$

Problem 5:

Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and U is a subspace of V.
Show that U is invariant under T if and only if U^{\perp} is invariant under T^{*}

Problem 6:

(if time permits) Suppose V is finite-dimensional and U is a subspace of V.
Show that $V=U \oplus U^{\perp}$

Problem 7:

(if time permits) Let $\left(v_{1}, \cdots, v_{n}\right)$ be an orthonormal basis of V and suppose the matrix of $T \in \mathcal{L}(V)$ is A. What is the matrix of T^{*} with respect to that same basis?

3 Daniel Sparks

1

Let $U=\operatorname{Span}\left(u_{1}, \cdots, u_{m}\right)$ and $W=\operatorname{Span}\left(w_{1}, \cdots, w_{k}\right)$ be two subspaces of an inner product space V. Suppose that for each $1 \leq i \leq m, 1 \leq j \leq k$ that $\left\langle u_{i}, w_{j}\right\rangle=0$. Prove that $U \perp W$.

2

Let $P: V \rightarrow V$ be a projection onto the subspace U. That is, suppose that $P^{2}=$ P and $P(V)=U$. Prove that P is self-adjoint if and only if P is an orthogonal projection, that is, if and only if $\operatorname{null}(P) \perp$ range (P).

